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Abstract

Gerrymandering is the act of drawing new political district boundaries
in a way that gives electoral advantages to certain political parties, groups,
or individuals. It is difficult to prove instances of gerrymandering, but this
paper explores the process of ensemble generation to produce a large sample
of district maps which is representative of the universe of plausible district
maps which legislators should be choosing from. From such maps, researchers
can perform outlier analysis to determine whether a given map is an outlier
compared to the ensemble, based on a number of different characteristics. If
the map is an outlier, it may be a product of gerrymandering. The paper next
describes the ReCom algorithm, which is the most sophisticated established
method for generating this ensemble of plausible district maps.
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Chapter 1

Introduction

Redistricting is the process of drawing new boundaries organizing geograph-
ical units into congressional and state legislative districts. Legislators would
ideally treat the process of redistricting as a geometrical optimization prob-
lem: how can we best create new district boundaries which satisfy a number
of constraints, such as equal population, contiguity, compactness, and more?

However, state legislatures are sometimes accused of gerrymandering : the
process of redistricting in a way that gives electoral advantages to certain
political parties, groups, or individuals. The state of Tennessee has been
accused of gerrymandering in their creation of new congressional districts
following the 2020 U.S. Census (see Figure 1.1), as one of Tennessee’s two
previous majority Democratic districts has been split and redistributed into
majority Republican districts, leaving the state with only one district which is
projected to vote for Democratic candidates. Tennessee’s new congressional
district map motivated the writing of this thesis as an exploration of how to
computationally identify instances of gerrymandering.

It is difficult to prove in a court of law that legislators are guilty of ger-
rymandering, since such an argument entails proving that legislators inten-
tionally drew a district map with partisan bias. Until recently, arguing that
legislators purposefully created biased maps entailed an attempt to get in-
side legislators’ heads, identifying the intrinsic motivation (partisan, racially
motivated, or otherwise) that led them to choose a particular map.

However, a number of mathematical techniques have been developed in
recent years to examine the levels of bias in redistricting. One approach is
to treat redistricting as a graph partition problem and use spanning trees for
recombination in order to generate an ensemble of plausible district maps.
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(a) Post-2010 Census Map (b) Post-2020 Census Map

Figure 1.1: Maps of Tennessee’s nine U.S. congressional districts created
following the 2010 and 2020 censuses. Maps are colored on a scale of blue
to red based on the electoral results of the 2020 presidential election, with
dark blue representing strong Democratic majority and dark red representing
strong Republican majority (Boschma et al., 2022).

The GerryChain Python package uses the family of ReCom Markov chains to
generate an ensemble of plausible district maps and perform outlier analysis
comparing the enacted map to the ensemble, examining a number of different
potential biases. Generating distributions of maps provides an objective basis
for comparison of district maps, enabling researchers to identify when, in the
context of an ensemble of plausible district maps, it appears evident that an
enacted district map is an extreme outlier and might therefore be a product
of gerrymandering.

It is important to start by defining a few key terms which I will be refer-
encing throughout my thesis.

Definition 1 (Voting Tabulation District (VTD)). Voting tabulation dis-
trict (VTD) is a general term which refers to the geographical units of land
which determine where citizens vote in local and state elections. Other fa-
miliar terms such as precinct, ward, and census block are all considered to be
VTDs (Mumpower, 2021; U.S. Bureau of the Census, 1994).

VTDs serve as basic geographical units, and together they form districts.

Definition 2 (District). A district is a cluster of VTDs which is assigned a
representative in local, state, or federal government. Individuals may vote
in the election of a representative if and only if they are a resident of that
representative’s district (Mumpower, 2021; U.S. Bureau of the Census, 1994).

Having defined VTDs and districts, we can now formally define redistrict-
ing.

Definition 3 (Redistricting). Redistricting is the act of assigning all VTDs
in a state to k districts, making sure that the resulting districts are equal
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in population (or only deviate up to a certain established threshold). The
process of redistricting occurs once every ten years, following the U.S. Census.

Gerrymandering is thus, in short, intentionally biased redistricting. This
thesis will examine the methods established by mathematicians to identify
bias in redistricting.

Chapter 2 will establish the mathematical background which is the foun-
dation of the analysis techniques in this paper. Chapter 3 will explain meth-
ods of ensemble generation, as ensembles serve as a basis of comparison for
the potentially biased maps in question. Chapter 4 describes ReCom, a so-
phisticated technique for producing plans which will make up ensembles.
Finally, chapter 5 enumerates final reflections and potential future directions
for computational redistricting analysis.
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Chapter 2

Mathematical Background

It is important to start by defining some of the main mathematical concepts
behind algorithms for redistricting analysis.

Definition 4 (Graph). A graph G = (V,E) consists of a set of vertices, V ,
and a set E of unordered pairs of elements in V . The elements in E, called
edges, connect pairs of vertices. The set V must be non-empty, while E can
be empty (Shahriari, 2021).

Visually, we can represent a graph as a collection of dots, representing
vertices, with lines connecting various pairs of dots, representing edges.

Definition 5 (Subgraph). A subgraph H = (V ′, E ′) of a graph G = (V,E)
is a graph such that V ′ ⊆ V and E ′ ⊆ E (Shahriari, 2021).

Definition 6 (Planar graph). A planar graph is a graph which can be
drawn in a two-dimensional plane without any edges crossing (see Figure 2.1)
(Shahriari, 2021; Weisstein, 2023b).
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Figure 2.1: Planar graph (left) and non-planar graph (right) (Weisstein,
2023b).

Definition 7 (Dual graph). Let G be a planar graph. We can construct the
dual graph of G, G∗, by following these two steps (see Figure 2.2 for a
visual representation of these steps):

1. Place a vertex in each region (area enclosed by edges) of G, including
the exterior region.

2. If two regions of G share a boundary edge E, place an edge E∗ between
the vertices corresponding to these bordering regions, ensuring that E∗
only crosses E.

The resulting graph, G∗, will always be planar (Weisstein, 2023a).

Figure 2.2: Steps to construct a dual graph, G∗, from a planar graph, G.
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Figure 2.3 demonstrates the establishment of a dual graph for the state
of Iowa, assigning a vertex of the graph to each VTD, and connecting the
vertices of VTDs which border one another with an edge. This establishment
of a dual graph will serve as a first step in our ensemble generation efforts.
Note that the dual graph of a state does not include a vertex in the region
exterior to the state, and in this way differs from the traditionally defined
dual graph.

Figure 2.3: Dual graph of Iowa’s VTDs (in this case, counties) on the left,
with a district map assignment on the right (Deford et al., 2021).

Definition 8 (Walk). Let G = (V,E) be a graph with some subset of the set
of vertices V defined as x0, x1, x2, ..., xm. A walk of length m is a sequence
of m edges in G of the form

{x0, x1}, {x1, x2}, ..., {xm−1, xm}.

We say that this walk joins the vertices x0 and xm (Shahriari, 2021).

Definition 9 (Cycle). Let G = (V,E) be a graph. Assume G has a walk of
length m of the form

{x0, x1}, {x1, x2}, ..., {xm−1, xm},

where x0 = xm and all other vertices in the walk are distinct. We call this
walk a cycle (Shahriari, 2021).

Definition 10 (Connected graph). A graph G = (V,E) is connected if there
exists a walk joining every distinct pair of vertices in V (Shahriari, 2021).

Definition 11 (Tree). Let G = (V,E) be a graph. If G is connected and
contains no cycles, then we call G a tree (Shahriari, 2021).
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Definition 12 (Spanning tree). LetG = (V,E) be a graph with n vertices. Let
T = (V,E ′) be a tree where E ′ ⊆ E (note that, by Definition 11, |E ′| = n−1).
We call T a spanning tree for G (Shahriari, 2021). In other words, a
spanning tree of a graph G is a subgraph of G containing all of the graph’s n
vertices, which are connected by exactly n − 1 edges (see Figure 2.4). Note
that, by construction, a spanning tree cannot contain any loops.

Figure 2.4: Connected graph G with nine vertices and a possible spanning
tree of G. Note that the Figure displays just one of the potential spanning
trees of G.

Definition 13 (Markov chain). A markov chain is a sequence of random
variables X1, X2, ... such that the probability of Xk depends only on Xk+1.
Thus, we can write P(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) =
P(Xn+1 = xn+1|Xn = xn).

Definition 14 (Simple random walk). A simple random walk is a Markov
chain that creates a walk (see Definition 8) on a graph G through the follow-
ing process: starting at a vertex v of G, the next step of the walk is chosen
uniformly at random from the set of vertices that share an edge with v. That
is, the probability of each step of the walk depends only on the previous step
of the walk.

The fact that we can establish a dual graph on a state, with one vertex for
every geographical unit and edges that connect the vertices corresponding to
geographical units that border one another, informs our approach to ensem-
ble generation. A partition of this dual graph into k districts represents a
districting plan. In order to generate an ensemble of plausible district maps,
we start with a partitioned dual graph of a state and implement a Markov
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chain which uses the partitioned dual graph as its initial state and modifies
the current state at each step of the Markov chain. A particular Markov chain
algorithm, known as ReCom, uses spanning trees to modify district plans by
recombination. Using iterative Markov chains, we can generate a wide array
of plans which together form an ensemble.
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Chapter 3

Ensemble Generation

In order to analytically identify instances of gerrymandering, researchers aim
to generate an ensemble of district maps which is representative of the set of
plausible district maps.

Definition 15 (Plausible district maps). The set of plausible district maps
is the set of district maps which, in theory, legislators should be choosing
from. This set is defined by a number of constraints which exclude maps
that would be unreasonable for legislators to choose. The set of plausible
district maps should thus represent the sample space from which legislators
select a redistricting plan.

The ensemble of maps must satisfy a number of constraints, which are
determined by government regulations (and may vary state to state) as well as
informal standard practices of redistricting. Although the ensembles will not
be representative of the set of all possible districting plans (see Section 3.2),
researchers must take steps to make sure that the ensemble is representative
of the set of districting plans which a legislator might plausibly propose in a
state.

3.1 Constraints

Definition 16 (Constraint). A constraint is a restriction implemented in an
algorithm which establishes criteria that alter the output of that algorithm.

Constraints are vital in ensemble generation and redistricting practices
in general. We may implement any of the following constraints into a re-
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districting algorithm: population balance, contiguity, compactness, splitting
rules, compliance with the Voting Rights Act, and neutrality.

The implementation of constraints in ensemble generation can vary. There
are two main types of constraints: preferences and requirements (also com-
monly referred to as rejection filters).

Definition 17 (Preference). A preference is a constraint which assigns higher
weights to districting plans which satisfy the constraint, while assigning lower
weights to plans which do not satisfy the constraint (Duchin & Spencer,
2021). The resulting ensemble will contain a higher proportion of plans
which meet the restrictions established in the preference than those that do
not.

Definition 18 (Requirement (rejection filter)). A requirement, also known
as a rejection filter, is a constraint which forces the algorithm to exclude
districting plans that do not satisfy the constraint from the ensemble (Duchin
& Spencer, 2021). The resulting ensemble will contain only plans which meet
the restrictions established in the requirement.

Duchin and Spencer (2021) advise researchers to take care when imple-
menting rejection filters into their ensemble-generation algorithms. They
warn that the inclusion of too many requirements, or even a singular overly
strict requirement, may cause the ensemble-generation algorithm to “get
stuck,” preventing the algorithm from taking additional steps and impacting
the ability of the ensemble as a whole to be representative of the set of pos-
sible districting plans. They cite the Chen-Stephanopoulos protocol as an
example of a method which implements a high number of strict requirements,
resulting in small sample sizes which are at high risk of misrepresenting the
set of possible districting plans (see Chen and Stephanopoulos (2021) for an
in-depth description of this protocol).

Researchers can establish rejection filters which exclude districting plans
that fail to meet certain constraint thresholds from the ensemble, or they
can preferentially weight plans which better satisfy the constraints. How
researchers implement constraints varies, and most will likely include both
preferences and requirements in their redistricting analysis.

3.1.1 Population balance

The most universally implemented constraint in ensemble generation is pop-
ulation balance.
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Definition 19 (Population balance). Let Ps be the population of state s,
which is subdivided into k districts. Let pi be the population of the ith
district in state s, where i = 1, 2, . . . , k. Population balance occurs when,
for i = 1, 2, . . . , k:

pi ≈ Ps

k

In words, population balance occurs in a redistricting plan when the pop-
ulation of each district in a state is roughly equal.

It is unlikely that all districts in a state will have the exact same number
of inhabitants, and thus most researchers provide a small margin of error
for population balance. The exact range of this margin of error can vary
based on state-specific redistricting practices or preferences of researchers.
Although there is no consistent practice in place for setting a maximum
population deviation value, legislators should strive for population balance
in their redistricting efforts, and thus it is important to incorporate this
constraint into an ensemble generation algorithm.

In their analysis of potential districting plans for the Virginia House of
Delegates in 2018, the Metric Geometry and Gerrymandering Group (2018)
established a requirement that their computer-generated maps could devi-
ate no more than 1% from the ideal population value. In contrast, in their
analysis of nested districts in Alaska, Caldera, DeFord, Duchin, Gutekunst,
and Nix (2020) allowed district populations to deviate up to a maximum
of 5% from the ideal population value, in accordance with the maximum
population deviation established by federal law. Duchin and Spencer (2021)
conducted redistricting analysis on a total of twenty states, allowing district
populations to deviate up to 2% of the ideal population size. Tennessee’s
guide to redistricting references a “ten-percent standard,” allowing the pop-
ulation to deviate up to 10% of the ideal population size (Mumpower, 2021).
However, this standard is not enforced by law in Tennessee. The U.S. Cen-
sus Bureau simply writes regarding population balance, “Each congressional
district is to be as equal in population to all other congressional districts in
a state as practicable” (U.S. Bureau of the Census, 2023). Throughout all
implementations of population balance constraints researched for this thesis
(both in state legislation and in computational redistricting practices), 10% is
an upper bound for population deviation between districts. However, most
enacted districting plans have much smaller population deviation between
districts than the upper limit established by law, so researchers in compu-
tational redistricting often choose an upper limit for this deviation which is
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smaller than 10% (Deford et al., 2021). A redistricting plan which is lenient
regarding population balance may raise questions as to why legislators are
allowing for population deviation to that extent, when it is likely not nec-
essary. Thus, setting strict population balance constraints as a requirement
in ensemble generation allows researchers to identify plans which do not re-
spect this degree of population balance and question whether legislators were
motivated by a particular bias in selecting those plans in particular.

3.1.2 Contiguity

Definition 20 (Contiguity). A district is contiguous if all of its geographic
components are connected to each other. A districting plan which respects
contiguity is composed entirely of contiguous districts.

With a few exceptions, contiguity implies that, regardless of starting point
within a district, one can reach any other point in the district without crossing
into another district. Exceptions may occur around bodies of water and in
other particular cases. In other words, every geographical unit in a district
must neighbor at least one other geographical unit within the same district
in order for contiguity to be respected in a districting plan. Constructing
dual graphs (see Definition 7) for each state whose edges connect only those
geographic components which share a border helps ensure contiguity (Deford
et al., 2021).

There are three main types of contiguity: rook contiguity, bishop’s conti-
guity, and queen’s contiguity. We are largely concerned with rook contiguity,
so we proceed by defining it.

Definition 21 (Rook contiguity). In rook contiguity, two regions are con-
sidered contiguous if they share a border of non-zero length (see Figure 3.1).
This is in contrast to bishop’s contiguity, under which two regions are con-
sidered contiguous if they meet at a single point, and queen’s contiguity,
under which two regions are considered contiguous if they share a border of
non-zero length or meet at a single point (Anselin, 2020).

In the field of computational redistricting, we want to enforce rook con-
tiguity, meaning that in order for a district to be considered contiguous, its
constitutive geographical units must each share a border of non-zero length
with at least one other geographical unit in the district (Metric Geometry
and Gerrymandering Group, 2018). In other words, a district is not contigu-
ous if one of its constitutive geographical units is connected to the rest of
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Figure 3.1: Rook contiguity, bishop’s contiguity, and queen’s contiguity on a
3x3 grid.

the district by only a single point. Like in the case of population balance,
we implement rook contiguity as a requirement (as opposed to a preference)
in ensemble generation.

3.1.3 Compactness

Definition 22 (Compactness). Compactness concerns a preference for “reg-
ular” or condensed district shapes.

While population balance and contiguity are relatively simple to measure,
compactness is more difficult to define. It is less obvious which districts sat-
isfy compactness constraints and which do not. Deford et al. (2021) write, “in
practice, compactness is almost everywhere ruled by the proverbial eyeball
test.” An eyeball test is difficult for mathematicians to accept, and even more
difficult to model, so although legislators typically depend on the eyeball test,
researchers in the field of the mathematics of redistricting have developed al-
ternative methods of quantifying compactness. Deford et al. (2021) mention
the Polsby-Popper score (Polsby & Popper, 1991), which correlates compact-
ness with equal perimeters across districts, as well as the Reock score (Reock,
1961), which assesses compactness by comparing a district to a circumscribed
circle. However, they note that these scores are unreliable and highly vari-
able. Instead, Deford et al. (2021) suggest the use of cut edges to measure
compactness.

Definition 23 (Cut edge). A cut edge is an edge in the dual graph (see
Definition 7) of a state whose vertices are members of different districts.
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The number of cut edges in the dual graph of a given districting plan
provides a measure for the relative compactness of that plan.

The total number of cut edges in a districting plan corresponds roughly
to the total length of the perimeter shared between districts, and thus rep-
resents important information about compactness. Researchers can strive to
generate an ensemble of compact districts by minimizing the number of cut
edges in the ensemble plans. Deford et al. (2021) also note that the number
of cut edges in the dual graph of a districting plan is inversely correlated
with the total number of spanning trees of all individual districts in the plan.
A compact districting plan will consist of mostly plump, rounded districts,
resulting in a small number of cut edges in the state dual graph and a large
number of potential spanning trees for each district in the districting plan.
A districting plan which is not compact may have skinny, winding districts,
resulting in a large number of cut edges in the state dual graph and a small
number of potential spanning trees for each district in the districting plan
(see Figure 3.2).

Figure 3.2: Sample districting plans of Virginia which illustrate the relation-
ship between compactness and cut edges; the map on the left is non-compact
with a high number of cut edges, while the map on the right is much more
compact and has fewer cut edges (Metric Geometry and Gerrymandering
Group, 2018).

3.1.4 Splitting rules

States often designate a preference for districting plans which preserve areas
that are larger than the basic geographical units which compose districts.
These larger areas may be counties, municipalities, or “communities of inter-
est” (Deford et al., 2021). For example, the Tennessee Guide to Redistricting
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recommends that legislators should “consider other variables when drawing
new plans,” such as “city or incorporated boundaries” (Mumpower, 2021).
However, this constraint is not implemented as a requirement, but rather as
a preference.

Deford et al. (2021) note multiple potential methods for implementing
splitting rule constraints as a preference in computational redistricting. One
technique is to score plans based on the total number of larger areas of interest
which are split. Researchers would count the total number of areas of inter-
est which are divided by district boundaries and establish a preference for
plans which split the lowest number of areas of interest. Duchin and Tenner
(2021) discuss “county-conscious sampling,” discussing a number of differ-
ent methods to account for county preservation interests in computational
redistricting. One such method requires that the districts merged in stage 2
of ReCom (see Section 4.2.2) must be two districts that split a county, in the
hopes that the two new districts generated from the merged super-district
will no longer split that county. Another method counts the total number
of counties split in the currently enacted plan, and requires that plans gen-
erated by the modification proposal algorithm may not split more counties
than the enacted plan. An additional method is specific to the ReCom algo-
rithm, giving slightly higher random weights to edges of the spanning tree of
the super-district that connect geographical units which are both within the
same county, thus increasing the likelihood that the cut edge in the spanning
tree will be on a county border (see Section 4.2.3 for more information on the
specifics of Stage 3 of the ReCom algorithm). This county preservation method
qualifies as a preference. Further, Duchin and Tenner (2021) also propose
a rejection filter which sets a maximum number of county pieces which the
boundaries in a districting plan can create. Instead of simply counting the
number of counties which are divided, this method accounts for situations
in which a single county may be split into three or more districts. Thus,
Duchin and Tenner (2021) propose both preferences and rejection filters as
methods for implementing constraints regarding county preservation; they
also note the validity of refraining from establishing any county preservation
constraint at all.

Ultimately, redistricting splitting rules vary greatly from state to state,
with some states requiring specific redistricting practices by law with regards
to the splitting of areas of interests, and other states refraining from mention-
ing county preservation (or the preservation of cities, municipalities, or other
communities of interest) as a priority when it comes to redistricting. The
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constraints adopted in computational redistricting practices thus vary based
on the established splitting rules in the state the researcher is analyzing, as
well as the priorities or preferences of the researcher. A researcher might
choose to generate multiple ensembles with a variety of splitting constraints
and compare the characteristics of the resulting ensembles.

3.1.5 Voting Rights Act Compliance

The Voting Rights Act of 1965 is defined as “an act to enforce the fifteenth
amendment to the Constitution,” which extended voting rights to Black men
in the United States in 1870 (Voting Rights Act , 1965). Section 2 of the
Voting Rights Act has notable implications for redistricting practices, as it
prohibits any voting legislation which would result in the “denial or abridge-
ment of the right of any citizen of the United States to vote on account of
race or color” (Democracy Docket, 2021b). Specifically, Section 2 of the Vot-
ing Rights Act (VRA) outlaws what is known as “minority vote dilution”
(Hebert, Smith, Vandenberg, & DeSanctis, 2010).

Definition 24 (Minority vote dilution). Minority vote dilution occurs
when districting plans reduce or eliminate the potential political influence
(also known as voting power) of racial or ethnic minority groups.

Section 2 of the Voting Rights Act indicates that the denial or abridge-
ment of the right to vote occurs if the members of any racial or ethnic mi-
nority group “have less opportunity than other members of the electorate
to participate in the political processes and to elect representatives of their
choice” (Hebert et al., 2010). In order to prevent the denial or abridge-
ment of the right to vote for members of racial or ethnic minority groups
through minority vote dilution, Section 2 sometimes calls for the creation of
“majority-minority districts” (Hebert et al., 2010).

Definition 25 (Majority-minority district). A majority-minority district
is a district in which a racial or ethnic minority group “constitutes an effective
voting majority” (Hebert et al., 2010).

In the 1986 Supreme Court decision in Thornburg v. Gingles, the Supreme
Court outlined a framework indicating when a majority-minority district
is required under Section 2 of the Voting Rights Act. The following four
statements must all be true in order for the Voting Rights Act to mandate
the creation of a majority-minority district:
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1. The minority group must be “sufficiently large and geographically com-
pact to constitute a majority” in a single-member district (Hebert et
al., 2010).

2. The minority group must be “politically cohesive” (Hebert et al., 2010).

3. The white majority must vote “sufficiently as a bloc to enable it...
usually to defeat the minority’s preferred candidate” (Hebert et al.,
2010).

4. “Under the totality of circumstances,” the minority group must have
“less opportunity than whites to participate in the political process
and to elect representatives of its choice” (Hebert et al., 2010). In
other words, there must exist a “lack of proportionality” in which the
minority group lacks a level of representation which is proportional to
their share of the population (Hebert et al., 2010).

When all of the above requirements are true, Section 2 of the Voting
Rights Act mandates the creation of a majority-minority district. Hebert
et al. (2010) expands in-depth on the criteria for determining the conditions
under which each of these requirements is true, noting that different court
cases have provided standards for the truth of these statements that are
sometimes in conflict with one another. However, the existence of legislation
which can mandate the creation of a majority-minority district is meaningful
in determining proper redistricting practices.

Deford et al. (2021) note the difficulty of incorporating the requirements of
the Section 2 of the Voting Rights Act into ensemble generation as a quan-
titative constraint, given that the requirements for determining whether a
majority-minority district is mandated involve the analysis of “local histories
of discrimination and patterns of racially polarized voting.” Becker, Duchin,
Gold, and Hirsch (2021) suggest the use of effectiveness scores in order to
preferentially weight district plans containing districts in which members of
racial and ethnic minority groups have “realistic opportunities to nominate
and elect their preferred candidates.” By incorporating these effectiveness
scores as a constraint in ensemble generation, we can create what Becker et
al. (2021) refer to as “VRA-conscious ensembles” which are representative of
the “universe of VRA-compliant plans.”

It is important to note that, often, there is a trade-off between VRA-
compliance and compactness. In order to build a majority-minority dis-
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trict, legislators sometimes have to create districts which appear wildly non-
compact to the eye. Non-compact districts are considered to be warning
signs for gerrymandering, but there are cases in which districts are inten-
tionally non-compact in order to give a racial or ethnic minority group the
opportunity to gain a majority and elect a representative of their choosing
within the district. For example, Illinois’ 4th Congressional District has been
given the nickname of the “earmuffs” district due to its unusual shape, and
many have accused state legislators of racial or partisan gerrymandering be-
cause the district is so blatantly non-compact (see Figure 3.3). However,
Illinois’ 4th Congressional District is actually a majority-minority district
created in compliance with the Voting Rights Act which provides the Lat-
inx population of Chicago the opportunity to elect a representative of their
choosing (Scales, 2020). Thus, although non-compact districts are usually
good indicators for racial or partisan gerrymandering, the Voting Rights Act
may mandate the creation of unusually non-compact districts in order to
provide electoral opportunity to racial or ethnic minority groups. Note that
the lack of compactness of some VRA-compliant districts provides motiva-
tion for researchers to implement compactness as a preference rather than a
requirement; otherwise, ensemble generation algorithms could prohibit some
maps with VRA-compliant districts from being included in the ensemble of
plausible district maps.

At the time of writing (April 2023), the Supreme Court is considering
the case Merrill v. Milligan, in which voters and non-profits in Alabama
challenged the new congressional district map of Alabama drawn following
the 2020 U.S. Census based on the claim that it violated Section 2 of the
Voting Rights Act. The map includes only one majority-Black district, when
the Black population proportionally makes up enough of Alabama’s total
population that the state should have two majority-Black districts to en-
sure compliance with the Voting Rights Act (Democracy Docket, 2021a). If
the Supreme Court rules against those challenging the enacted map, they
may invalidate Section 2 of the Voting Rights Act, fundamentally changing
the way legislators are held accountable for providing racial and ethnic mi-
norities with the opportunity for proportional representation. The Supreme
Court previously invalidated another section of the Voting Rights Act which
provided even stricter regulations on state redistricting practices, and thus
lawmakers are keenly aware of the possibility that the decision in Milligan
will strip the Voting Rights Act of yet another set of requirements which
protect the voting rights of racial and ethnic minority groups.
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Figure 3.3: Illinois’ 4th Congressional District. A VRA-compliant majority-
minority district created to give Chicago’s Latinx population an effective
voting majority (Scales, 2020)

Given that Section 2 of the Voting Rights Act is still valid at the time
of writing, researchers must consider ways to establish constraints which
promote the creation of VRA-compliant ensembles in computational redis-
tricting. The most sophisticated way of establishing such a constraint is the
use of effectiveness scores, referenced above.

3.1.6 Neutrality

Deford et al. (2021) note that some states establish rules to promote neutral
redistricting practices by stating that information such as partisan data or
incumbency status should not influence redistricting practices. Notably, the
Tennessee Guide to Redistricting contradicts Deford et al. (2021) by explic-
itly permitting legislators to consider the “protection of incumbents” when
drawing new district maps (Mumpower, 2021).

The method for ensuring that computer-generated ensembles are com-
posed of neutral plans is to avoid importing partisan data or incumbent
addresses associated with the geographical units which will compose the dis-
tricts. While a computer-generated ensemble can easily ignore partisan data,
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it is more difficult for a legislator to do so. Equally, it is difficult to prove
that legislators purposefully took partisan data into account when drawing
new district maps, or whether the partisan leanings of districts are simply
a coincidence. Partisan gerrymandering (purposefully drawing districts in
a way that benefits a particular political party) is a major concern in the
United States today– while we can ensure that a computer does not generate
plans with intentional partisan bias by withholding from the computer the
partisan data associated with the geographical units in a state, it is much
more difficult to make sure that legislators lack any partisan bias in their
redistricting practices.

3.2 Sampling

As previously stated, it is key to note that when generating ensembles of dis-
tricting plans, researchers do not aim to generate ensembles which are repre-
sentative of all possible districting plans (i.e., plans which respect population
balance and contiguity). The two universally implemented constraints in re-
districting are population balance between districts and contiguity, which
requires all districts in a district plan to be composed only of geographi-
cal components which neighbor other geographical units within the district.
However, many districting plans which satisfy population balance and conti-
guity and are thus considered to be possible districting plans will not belong
to the sample space of plausible districting plans, largely due to their lack of
compactness (see Figure 3.2).

Deford et al. (2021) note two main reasons why uniform sampling, ran-
domly sampling from the entire population of possible district maps, is both
impractical and unhelpful in the context of redistricting. First, they write,
“the uniform distribution would be regarded as prohibitively non-compact
in the application domain” (Deford et al., 2021). In fact, they remark that
the majority of plans in any random sample from the entire population of
possible districting plans would involve bizarrely shaped districts which will
have substantially lower compactness scores, on average, than enacted or
plausible plans. Randomly sampled plans tend to be so non-compact that
they would have no likelihood of real-world implementation, and thus they
are not useful to include in our analysis.

While some may suggest uniform sampling from all possible plans with a
compactness threshold (e.g., setting an upper limit of the number of cut edges
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for inclusion in the ensemble), researchers will still face a dilemma similar to
when they attempted to uniformly sample without a compactness threshold.
Deford et al. (2021) demonstrate in their paper that the majority of plans
in an ensemble restricted by a compactness threshold will have compactness
scores which are very close to the chosen threshold (i.e., most plans in the
ensemble will be as non-compact as possible). The second reason which
Deford et al. (2021) provide to explain the necessity of nonuniform sampling
is the fact that “there are in any case obstructions to uniform sampling at
the practical scale of redistricting problems.” They note that even in a 7x7
grid, there are 158,753,814 possible plans that divide the grid into 7 districts
of 7 units each (Deford et al., 2021). When researchers attempt to shift to a
problem on the scale of an entire state, the number of possible plans increases
exponentially. For example, the state of Tennessee has 240,116 census blocks
from which they construct nine districts (U.S. Bureau of the Census, 2013);
it would be computationally prohibitive to generate the population of all
possible plans and randomly sample from it.

Given the difficulty in generating an entire population of possible dis-
tricting plans to randomly sample from, as well as the lack of compactness
in uniformly drawn samples which would restrict practical applications and
the potential of meaningful comparison of a uniformly sampled ensemble and
an enacted redistricting plan, researchers must identify a different approach
to ensemble generation. Deford et al. (2021) note that ReCom naturally runs
in such a way that the probability of selecting a particular partition (e.g., a
particular districting plan) is roughly proportional to the number of spanning
trees of the districts that make up that partition. We know that plumper
districts have more possible spanning trees, so ReCom makes plans which are
more compact more likely. This ensures that the resulting ensemble will bet-
ter represent the pool of plausible plans a legislator should be sampling from
than a uniformly sampled ensemble.

More formally, we can define sp(G) as the total number of possible span-
ning trees of a graph G. Note that for any graph G, sp(G) is greater when
the graph is plumper, or more compact. Given a districting plan P which
is composed of k districts P1, P2, ..., Pk, we let sp(P ) =

∏k
i=1 sp(Pi) (DeFord

& Duchin, 2022). A partition P with a high sp(P ) value indicates that it is
likely composed of compact districts, signaling that the plan P is a compact
districting plan.

Deford et al. (2021) show that when using the ReCom algorithm to generate
an ensemble, the probability of generating a districting plan P is roughly pro-
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Figure 3.4: Ensemble compactness statistics based on the number of cut
edges in district plans partitioning a 7x7 grid into 7 districts of 7 units each.
The red distribution represents the uniform distribution of all 158,753,814
possible plans. The blue distribution represents the more compact spanning
tree distribution, which is our target distribution in this case. The gray
distribution represents the distribution of 100,000 possible plans generated
using the ReCom algorithm. It is evident that ReCom targets the more com-
pact spanning distribution, demonstrating the ability of ReCom to generate
compact ensembles (Deford et al., 2021).

portional to sp(P ), meaning ReCom naturally favors districting plans which
are more compact. This is desirable, since it means that a ReCom-generated
ensemble is able to better reflect the pool of plausible districting plans which
legislators might be choosing from. Figure 3.4 demonstrates the tendency
of ReCom to generate ensembles which are more compact than uniformly-
sampled ensembles and which approximate the spanning tree distribution
(the distribution of the value sp(P )), which is our target distribution. Given
that the universe of plausible district plans is, on average, more compact than
the universe of possible district plans, the fact that ensembles generated with
ReCom are, on average, more compact than uniformly sampled ensembles in-
spires confidence that ReCom provides a practical technique for generating a
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sample which is representative of the sample space of plausible district plans.

3.3 Phases of Ensemble Generation

DeFord (2019) lays out five main phases to ensemble generation:

Phase 1. Establish constraints to define the set of possible partitions that we can
sample from.

Phase 2. Select an initial districting plan, known as the seed plan.

Phase 3. Propose a modification to the plan.

Phase 4. Ensure that the modification satisfies the constraints established in
phase 1.

Phase 5. Apply the Metropolis-Hastings Algorithm to preferentially accept more
compact plans into the ensemble.

Phase 6. Repeat phases 2-5.

3.3.1 Phase 1: Establish constraints

The first phase of ensemble generation consists of establishing constraints to
define the set of plausible district maps.

Given Definition 15 of plausible district maps, the goal of generating
an ensemble of district maps which represent the sample space of plausible
district maps is intuitive, with the aim in ensemble generation to generate a
set of maps which can serve as a base of comparison for a given redistricting
plan in outlier analysis. Establishing constraints to specify the range of
characteristics necessary for inclusion in the ensemble is a key part of ensuring
that the ensemble is representative of the set of plausible district maps.

Section 3.1 defines the constraints implemented in the field of computa-
tional redistricting, and this section will proceed by discussing the implemen-
tation of the constraints.

The first (and most universally implemented) constraint that we imple-
ment is population balance. Population balance is unique in that, unlike
most other constraints listed in Section 3.1, states often legally establish up-
per bounds on the degree to which population can vary between districts
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in a state. Legislators mostly select plans with districts whose populations
deviate much less than the upper limit allows them to, so researchers will
often implement a population constraint which is stricter than the law or
established precedent in a given state. Researchers universally implement
population balance as a requirement (see Section 3.1), so that the ensem-
ble does not contain any plans whose districts deviate in population more
than the established upper limit. It is also a generally accepted practice to
implement rook contiguity as a requirement (see Definition 21).

Beyond population balance and contiguity, the implementation of con-
straints varies, and Deford et al. (2021) encourage individuals to experiment
with different constraints and see how the resulting ensemble changes.

There are a number of different ways of implementing compactness con-
straints when generating an ensemble. First, the researchers note that par-
ticularly in the case of the ReCom algorithm, the algorithm naturally pro-
duces plans which are compact by construction (see Section 3.2), without
any tuning (Deford et al., 2021). Thus, with certain modification techniques
which tend to create compact plans, it may not be necessary to implement
an additional compactness constraint. Other researchers may implement a
maximum number of cut edges (see Definition 23) as either a requirement or
a preference, given the established inverse relationship between total num-
ber of cut edges in a district plan and compactness. Other researchers have
implemented various compactness scores to give preference to district plans
which are more compact. The Polsby-Popper score assigns district plans a
score based on the lengths of the perimeters of the districts which compose
the plan, and the Reock score compares districts in a district plan to a cir-
cle in order to assess their compactness (Deford et al., 2021). Deford et al.
(2021) advocate for the use of cut edges over these scores as a measure of
compactness, but it is clear that there is not a standardized way of handling
compactness in the field of computational redistricting.

Researchers enumerate many potential methods of implementing con-
straints regarding splitting rules, noting that the implementation of splitting
rule requirements or preferences depends on the regulations of the specific
state being analyzed, as well as the goals and interests of the individuals
conducting the research. Becker et al. (2021) note the potential use of effec-
tiveness scores to ensure compliance with the Voting Rights Act, establishing
a preference for plans which provide more opportunities for racial and ethnic
minorities to elect representatives of their choice. Finally, researchers can
ensure neutrality in ensemble generation by refraining from importing any
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partisan voting data associated with the geographical units in a state.
Thus, while researchers in the field of computational redistricting have

accepted the standardized practices of establishing an upper bound for pop-
ulation deviation between districts and rook contiguity as requirements, there
is room for researchers to be creative with other constraints. Researchers may
not choose to implement any constraints beyond population balance and rook
contiguity, or they may implement additional constraints to emphasize the
importance of certain characteristics in district plans, such as compactness
or Voting Rights Act compliance. However, Deford et al. (2021) warn against
implementing too many constraints or rejection filters which are overly strict,
as they have the potential to drastically slow down the process of ensemble
generation if researchers reject a large percentage of the district plans gener-
ated in Phase 3 of ensemble generation: propose a modification.

3.3.2 Phase 2: Select a seed plan

Once we have established constraints, we must select an initial state, or
starting point, for our ensemble generation. We will feed this initial state
into our modification algorithm in Phase 3 (see Section 3.3.3).

Definition 26 (Initial plan). An initial plan, also known as a seed plan, is
the district plan that we use as the initial state in our modification algorithm.

Deford et al. (2021) note the importance of generating an ensemble which
is based on multiple seed plans to ensure that the composition of the ensem-
ble is not dependent on a single starting point. In this way, researchers can
better ensure that ensembles are representative of the sample space of plau-
sible district maps (see Definition 15). Thus, we can use the enacted plan
as a seed plan, but we need the ability to generate additional seed plans.
These plans must be contiguous and sufficiently population-balanced, and
researchers may choose to make them subject to additional constraints, such
as compactness (Deford et al., 2021). Deford et al. (2021) describe two poten-
tial methods for seed plan generation: agglomerative methods and spanning
tree methods. Deford et al. (2021) write that they utilize both of these
techniques when generating ensembles.

Deford et al. (2021) lay out the following steps for the spanning tree
method for generating initial plans of a state with k total districts and total
population Ps:

1. Draw a spanning tree τ for the dual graph G of the entire state.
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2. Select an edge to cut in τ that will result in one district di which has
a population within an acceptable range of Ps

k
, also known as the ideal

district population size. The established population balance constraint
will determine the acceptable range above or below the ideal district
population size. The remainder of the graph G will form the spanning
tree τ ′, which consists of all vertices of G which have not yet been
assigned to a district.

3. Repeat step 2 until G has been partitioned into k total districts with
populations within an acceptable range of the ideal district population
size. This partition of G is a seed plan generated using the spanning
tree method.

In addition to the spanning tree method, Deford et al. (2021) describe the
agglomerative method for generating seed plans with k total districts. The
agglomerative method consists of the following steps:

1. Randomly select k geographical units (i.e., vertices of the dual graph
of the state) to be the seeds of the k districts in the plan.

2. Merge each of the seed districts with neighboring geographical units
until every geographical unit has been assigned to one of the k total
districts.

3. Check whether the resulting plan respects the established population
balance constraint. If not, re-balance the plan by re-assigning geo-
graphical units to new districts until population balance is achieved.
To prevent breaking contiguity, make sure to only re-assign a geograph-
ical unit into a new district that the geographical unit shares a border
with.

The agglomerative method is also known as the “Petri dish” method
(Duchin & Tenner, 2021). Deford et al. (2021) note that this seed plan
generation method often reaches a “dead-end configuration,” meaning it is
unable to complete a valid plan. If this occurs, the algorithm will start over
and attempt again to generate a seed plan.

Although Deford et al. (2021) notes the necessity of multiple seed plans,
they do not specify how many plans in total are required to ensure that the
resulting ensemble is independent of starting point. In their analysis of the
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state of Virginia, the Metric Geometry and Gerrymandering Group (2018)
uses 101 total initial plans: the enacted plan, as well as 100 mathemati-
cally generated seed plans. Autry, Carter, Herschlag, Hunter, and Mattingly
(2020) define the Multi-Scale Merge-Split Markov Chain Monte Carlo algo-
rithm for redistricting analysis, which they describe as an extension of the
ReCom algorithm. Autry et al. (2020) analyze the state of North Carolina,
generating an ensemble using ten total initial plans: the 2016 enacted dis-
trict plan, the 2020 enacted district plan, and eight seed plans produced
using the spanning tree method. There is no standard practice for choosing
the total number of seed plans implemented in ensemble generation, and this
choice may depend on the goals of the researcher or the computational power
available to them.

3.3.3 Phase 3: Propose a modification

The next phase of ensemble generation is to propose a modification on the
selected initial plan. Chapter 4 provides an in-depth explanation of two main
techniques for proposing a modification, the Flip algorithm and the ReCom

algorithm.
Techniques for proposing a modification take an initial plan as input,

modify that initial plan (subject to the established constraints from Phase
1 of ensemble generation), and produce a new plan which will be added to
the ensemble if it meets the established constraints and is accepted by the
Metropolis-Hastings algorithm. The modification algorithm will proceed by
modifying the new plan, and proposing the resulting plan to be contributed
to the ensemble. The repetition of this process many times will create an
ensemble. The number of repetitions necessary to generate an ensemble
which is representative of the sample space of plausible district maps depends
on the selected modification proposal algorithm, which will be expanded on
in Chapter 4.

3.3.4 Phase 4: Ensure modification satisfies constraints

Although establishing the constraints in Phase 1 of ensemble generation
should ensure that all plans proposed by the modification algorithm satisfy
those constraints, DeFord (2019) suggests incorporating an additional safety
check to exclude any maps from our ensemble that violate the established
constraints and therefore are not elements of the sample space of plausible
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district maps. Given that the goal of ensemble generation is to construct
an ensemble of district plans which is representative of the sample space of
plausible district maps, it is key to implement this phase of ensemble gen-
eration as a sort of security checkpoint for potential member plans of the
ensemble, making sure that all plans which compose the ensemble meet the
criteria established in the constraints in Phase 1 of ensemble generation.

3.3.5 Phase 5: Metropolis-Hastings Algorithm

The goal of the Metropolis-Hastings Algorithm is to sample from a desired
distribution about which we don’t know the exact form, known as the target
distribution (DeFord & Duchin, 2022). In the context of computational re-
districting, the target distribution is the distribution of all plausible district
maps which satisfy the established constraints from Phase 1 of ensemble
generation. Researchers in computational redistricting tend to choose the
distribution of compactness scores of all plausible district maps as the target
distribution, given the ability of ensemble generation algorithms to produce
plans which are comparably compact to those typically selected by legislators
is an area of concern for researchers (Deford et al., 2021). Given the previous
discussion regarding the necessity of nonuniform sampling due to the fact
that it would be computationally prohibitive to generate the population of
all plausible plans and randomly sample from it (see Section 3.2), it is also
computationally prohibitive to generate the compactness scores of all plausi-
ble plans for the same reason. Since we are interested in the distribution of
compactness scores of plausible plans, but cannot feasibly generate the dis-
tribution in its entirety and sample from it, the distribution of compactness
scores of plausible plans is a perfect candidate to be a target distribution for
the Metropolis-Hastings Algorithm.

The Metropolis-Hastings Algorithm requires an initial target distribution
which then initiates a Markov chain which aims to reflect the target dis-
tribution without knowing the characteristics of the target distribution in
its entirety. DeFord and Duchin (2022) note that the Metropolis-Hastings
algorithm is particularly useful when there exists a score which ranks some
states in the state space (not to be confused with the states of the United
States!) as preferable compared to other states, and we want to generate an
ensemble which targets the desired distribution by preferentially accepting
plans with “better” scores. DeFord and Duchin (2022) write, “We essen-
tially use the score to start with one Markov chain, then design a cleverly
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weighted coin and use a coin flip to accept or reject each proposed move”
(354). By designing a process which accepts or rejects proposed states based
on a score function, we are able to generate an ensemble of district maps
whose characteristics resemble that of the target distribution. In the case
of redistricting, we implement a score function which assesses the compact-
ness of districting plans, assigning “better” scores to plans which are more
compact. By designating a preference for plans with “better” compactness
scores, we are able to use the Metropolis-Hastings algorithm to preferentially
accept more compact plans in exactly the way we hope a legislator would
prioritize compactness.

The Metropolis-Hastings algorithm is as follows. Start with a score func-
tion s on the state space Ω, such that s : Ω → R. To ensure that states are
weighted according to their scores and that we are sampling from the target
distribution, we assign probabilities to each state in the state space based on
their scores. In the context of redistricting, a state y is a districting plan in
the state space Ω of plausible district maps. Thus, for any state y ∈ Ω, let
P(y) = s(y)∑

x∈Ω s(x)
. Note that in most situations it is impossible to calculate∑

x∈Ω s(x) since we are unable to represent the whole state space Ω given its
large size.

In cases where we cannot construct the state space in its entirety, we note
that although we cannot calculate P(y), we can instead calculate a ratio of
two probabilities since the denominators of both probabilities cancel:

P(z)
P(y) =

s(z)
s(y)

.

Being able to calculate this ratio is sufficient for the preferential weighting
in the Metropolis-Hastings Algorithm, allowing us to sample from our target
distribution without constructing the target distribution in full.

To perform the Metropolis-Hastings procedure, we start with a Markov
chain which will propose steps from one state (the initial state) to another
(the proposed state). We then calculate the ratio of the score functions
(which is also the ratio of the probabilities of the two states) for the two
states (initial and proposed) which is used in the decision of whether or not
to accept the proposed state with a certain probability. DeFord and Duchin
(2022) note, “It is this possibility of remaining in place that transforms the
stationary distribution to our desired values” (355). In other words, the
potential of rejecting a proposed state based on the ratio of its score and the
initial state’s score allows us to better approximate the target distribution.
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We can represent the Metropolis-Hastings Algorithm as a series of steps
(DeFord & Duchin, 2022):

Step 1. Starting with an initial state y (i.e., a district plan), use the Markov
chain to generate a proposed state z from the initial state y. In other
words, propose z as the next step of the Markov chain.

Step 2. Let α = s(z)
s(y)

q(z|y)
q(y|z) , where q(z|y) is the probability of transitioning from

the proposed state z to the initial state y, and q(y|z) is the probability
of transitioning from the initial state y to the proposed state z.

If α ≥ 1, accept z as the next state (i.e., district map in the ensemble).

If 0 < α < 1, accept z with probability α and reject z with probability
1− α.

Step 3. If z was accepted, it becomes the next state. If z was rejected, the next
state is y.

Step 4. Repeat this process each time the Markov chain generates a new pro-
posed state (i.e., after each step of the ReCom algorithm).

Note, in the Metropolis-Hastings Algorithm, the probability α of accept-
ing the proposed state z is calculated using the probability of transitioning
from the current state y to the proposed state z, as well as the probability
of transitioning from state z to state y. The calculation of these transition
probabilities depends on the method of proposing a modification selected in
Phase 3 of ensemble generation (see Section 3.3). Chapter 4 focuses on the
ReCom algorithm, a sophisticated method of proposing modifications for en-
semble generation. Section 4.2.5 will outline the process of calculating the
necessary transition probabilities in order to find the value α when running
the Metropolis-Hastings algorithm on a state proposed by the ReCom algo-
rithm in particular. For now, it suffices to note that because the current state
y and the proposed sate z are linked through the generation of spanning trees,
the probability of transitioning from y to z (and back) depends only on the
number of total possible spanning trees of each plan and the number of to-
tal possible cut edges which could have resulted in two population-balanced
districts.
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3.3.6 Phase 6: Repeat Phases 2-5

As stated in Section 3.3.2, it is necessary to generate an ensemble which is
based on multiple seed plans in order to ensure that the resulting ensemble
is (1) independent from starting point and (2) sufficiently representative of
the sample space of plausible district maps. Thus, researchers must com-
plete Phases 3 through 5 of ensemble generation for each selected seed plan.
As noted in Section 3.3.2, there is no generally accepted number of seed
plans required to generate an independent and representative ensemble, so
this decision is largely based on individual researchers’ goals and available
computational power.

In addition to the required repetition of Phases 3 through 5 for each
selected seed plan, the ensemble generation process contains more internal
repetition which is worth noting. As stated in Section 3.3.3, various modi-
fication proposal algorithms require different amounts of repetition in order
to generate an ensemble which is independent from starting point and suf-
ficiently representative of the sample space of plausible district maps. The
total amount of repetition needed may range from 10,000 steps (the gener-
ally accepted lower bound for repetition of the ReCom modification proposal
algorithm) to upwards of 1,000,000 steps when using the Flip modification
proposal algorithm (Deford et al., 2021). Each time the modification pro-
posal algorithm in Phase 3 generates a new potential district plan to add to
the ensemble, Phase 4 must ensure that the proposed plan does not modify
any of the constraints established in Phase 1 of ensemble generation, and the
Metropolis-Hastings algorithm (Phase 5 of ensemble generation) must proba-
bilistically determine whether to accept the proposed plan into the ensemble.

A simplified example will help illuminate the layers of repetition involved
in ensemble generation. Assume we have determined that 2 seed plans are
necessary to generate an independent and representative ensemble. Assume
also that for the selected modification proposal algorithm, 10 total plans are
required to ensure that the resulting ensemble is sufficiently representative of
the sample space of plausible district maps. Thus, for each of the 2 seed plans,
we must generate 10 plans using the chosen modification proposal algorithm.
Our ensemble will thus have 20 plans in total. For each of these 20 plans, we
must implement Phase 4 to ensure that they meet the constraints established
in Phase 1 of ensemble generation, and we must use the Metropolis-Hastings
algorithm (Phase 5 of ensemble generation) to preferentially accept more
compact plans into the ensemble. If either Phase 4 or 5 rejects one of the
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twenty proposed plans from the ensemble, we must return to the modification
proposal algorithm and generate new proposed plans (which we will then test
with Phases 4 and 5 of ensemble generation) until we have a total of 20 plans
accepted into the ensemble. Thus, the layers of repetition are very important
for the ensemble generation process.

The amount of repetition necessary depends heavily on the selected mod-
ification proposal algorithm (it was noted earlier that the potential repeti-
tion of the modification proposal algorithm ranges from 10,000 steps to over
1,000,000 steps, depending on the chosen modification proposal algorithm).
The following chapters explores two of the main modification proposal algo-
rithms that exist in the field of computational redistricting, the Flip algo-
rithm and the ReCom algorithm, and explains why the nature of these different
algorithms calls for such drastically different amounts of repetition.
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Chapter 4

The ReCom Algorithm

Once the initial districting plan has been selected, there are a number of
proposed methods of modifying this initial plan in order to create plausi-
ble district maps which, together, can compose a diverse ensemble which
is representative of the set of all plausible district maps. As our goal is to
perform outlier analysis utilizing an ensemble to determine whether a given
redistricting plan shows evidence of bias, it is necessary to implement a mod-
ification technique (i.e., Phase 3 of ensemble generation) which is sophisti-
cated enough to accurately represent the sample space of plausible district
maps, while avoiding being overly computationally expensive to allow us to
generate a large enough set of district maps. Becker and Solomon (2020)
address the issue of attempting to find a modification technique which suc-
cessfully represents the sample space of plausible district maps without being
overly complicated– they explain that, especially in large-scale redistricting
problems, we want to select an ensemble-generation algorithm which max-
imizes the quality of the generated plausible district plans while also max-
imizing the efficiency of the algorithm by keeping the runtime required to
generate a district map relatively low (Becker & Solomon, 2020). Here, the
quality of an ensemble refers to the ability of that ensemble to accurately
capture the universe of plausible district maps which, in theory, legislators
should be choosing from. The following sections describe several attempts
by researchers to find an algorithm which is both efficient and successful at
generating high-quality ensembles.
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4.1 Other modification proposal techniques

While there are numerous possible techniques for proposing a modification
(see Becker and Solomon (2020) for more details), the two most well-known
algorithms are Flip and ReCom. Although the Flip algorithm has been
widely used in the field of redistricting mathematics, Deford et al. (2021)
make a strong argument for the use of the newer ReCom algorithm instead.
The Flip algorithm changes the district assignment of one VTD at a time,
while ReCom works on a much larger scale. The runtime for a single step of
the Flip algorithm is substantially shorter than the runtime for one step of
the ReCom algorithm; however, while ReCom requires at least 10,000 steps to
produce a diverse ensemble of plausible district maps, Flip requires at least
1,000,000 steps (and there is some evidence which indicates that 1,000,000
steps may not even be reliably sufficient) (Deford et al., 2021). Thus, this
thesis will largely focus on the details of the ReCom algorithm, as its ability
to generate an ensemble of compact plans with relatively few steps indicates
its superiority to the Flip algorithm in this case (Deford et al., 2021).

4.1.1 The Flip Algorithm

The Flip algorithm (Fifield, Higgins, & Imai, 2014) precedes the ReCom al-
gorithm, and is a more well-known technique in the field of mathematical
analysis of redistricting practices. This algorithm follows the following basic
steps:

1. Randomly select one VTD in some district di which borders some dis-
trict dj where i ̸= j (we must select a VTD on the border of two
districts in order to preserve contiguity).

2. Reassign, or “flip” the selected geographical from di to dj, resulting in
a new district map which differs from the previous map by only one
node.

3. Add the new map to the ensemble.

4. Repeat.

While Flip ensures that all districts will be contiguous (see Fifield et al.
(2014) for a detailed proof of this claim), it frequently results in plans which
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Figure 4.1: (A) shows a simplified instance of the Flip algorithm on a 5x4
grid. (B) demonstrates 500,000 steps of Flip on a 50x50 grid which is split
into two population-balanced districts (Deford et al., 2021).

are notably non-compact. Figure 4.1 demonstrates a major problem with the
Flip algorithm. It is obvious that a legislator would never choose the map
which results from 500,000 Flip steps in Figure 4.1(B). Recall that the goal of
ensemble generation is to produce an ensemble which is representative of all
plausible district maps. Flip typically produces maps that are not plausible,
and this impacts the overall quality of our ensemble. It is thus difficult to
conduct outlier analysis when an ensemble contains so many maps which are
realistically irrelevant.

Deford et al. (2021) also note that while a single Flip step requires very
little computational power, it takes an extreme number of steps to generate
an ensemble which is independent of the selected seed plan, and even more
steps to create an ensemble which is representative of the sample space of
plausible district maps. Deford et al. (2021) write, “after 1 million steps the
structure of the initial state is still clearly visible, and we will present evidence
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that one billion steps is enough to improve matters significantly, but not to
thee point of approximate convergence of the ensemble.” Thus, the apparent
computational ease of conducting a singular Flip step is counterbalanced by
the total number of steps needed to generate a usable ensemble.

Deford et al. (2021) instead propose an algorithm called ReCom. A single
step of ReCom requires more computational power than a single step of Flip,
but substantially fewer steps of ReCom are required to generate a representa-
tive ensemble which is independent of its seed plan(s). Figure 4.2 compares
Flip and ReCom, demonstrating the vast difference in required number of
steps to generate district maps which are compact and independent from the
seed plan.

Figure 4.2: Deford et al. (2021) ran both the Flip and ReCom algorithms on
an initial partition of a 100x100 grid into 10 population-balanced “districts.”
The resulting Flip partition is notably non-compact and exhibits notable
similarities to the initial partition. Only 100 ReCom steps generate a resulting
partition consisting of compact districts which do not resemble the initial
partition.

It seems that ReCom provides solutions to the issues of non-compactness
and high number of necessary steps which plague the Flip algorithm. I will
proceed by detailing the process of the ReCom algorithm.

4.2 The stages of the ReCom algorithm

Having established the rationale for implementing ReCom in redistricting anal-
yses, it is important to examine the mathematics behind this algorithm.
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Note that the ReCom algorithm is one possible way to “propose a mod-
ification to the plan,” or Phase 3 of ensemble generation (see Section 3.3).
Equally, we could use the Flip algorithm as an alternative way to propose a
modification to the seed plan. Thus, regardless of the modification technique
selected for Phase 3 of ensemble generation, Phases 1 and 2 must precede
the implementation of any modification.

We can represent the ReCom algorithm with five major Stages (DeFord,
2019):

Stage 1. Select two bordering districts (see Figure 4.3).

Stage 2. Combine the geographical units of the two districts to create a super-
district (see Figure 4.4).

Stage 3. Draw a spanning tree for the super-district (see Figure 4.6).

Stage 4. Remove an edge from the spanning tree, leaving two districts with
approximately equal populations (see Figure 4.7).

Stage 5. Repeat Stages 1-4.

It is important to note the reference to the preceding five actions as
“stages,” rather than “steps.” Stages 1 through 4, as a whole, represent one
“step” of the ReCom algorithm. Thus, Stage 5, which asks us to repeat Stages
1 through 4, prompts us to run another step of ReCom. Hence, each step of
ReCom implements Stages 1-4 and results in a modified districting plan. This
modified districting plan gets added to the ensemble, as long as it passes
Phases 4 and 5 of ensemble generation. Thus, 10,000 “steps” of ReCom would
involve 10,000 runs of stages 1 through 4 of the algorithm, resulting in an
ensemble with 10,000 plausible district maps (with the exception of some
maps which may not make it into the ensemble due to their elimination in
phase 4 or 5 of ensemble generation).

I will proceed by examining each of these stages in detail.

4.2.1 Stage 1: District selection

The first Stage of ReCom is to select two bordering districts which the algo-
rithm will manipulate in future Stages. Deford et al. (2021) write, “we select
our pair of adjacent districts to be merged proportionally to the length of the
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boundary between them” (Deford et al., 2021). In other words, the selection
process preferentially targets pairs of districts which share the longest bound-
aries. This promotes district compactness, as it is likely that once we merge
and re-partition a pair of districts which initially share a long boundary, the
boundary between the pair of newly generated districts will be shorter (De-
ford et al., 2021). The preferential method of district selection promotes a
state’s compactness priority in redistricting, thus increasing the likelihood
that the maps generated through ReCom will be plausible.

Figure 4.3: A simplified map of ten population-balanced districts, each with
ten nodes. We will arbitrarily select the purple and red for demonstrative
purposes (DeFord, 2019).

Although it is possible to select more than two districts at once to merge,
restricting our selection to two districts at a time greatly reduces the runtime
necessary for each step of ReCom (Deford et al., 2021). We do not lose sophis-
tication by choosing two districts rather than k districts (the total number
of districts in the state) or some ℓ districts (where 2 < ℓ < k), and thus we
simplify the steps of ReCom by merging and re-partitioning two districts at
each step of the algorithm.

4.2.2 Stage 2: Merging the selected districts

The next stage of the ReCom algorithm is to merge the two selected dis-
tricts, creating one super-district. This super-district will contain all of the
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nodes from the two previously distinct districts, with edges still connect-
ing the sub-units (precincts, VTDs, etc.) that geographically border each
other. This stage lacks complexity, but the importance of the stage lies in
the fact that the two previously separate districts now together make up one
super-district, hence eliminating any ties of the sub-units to their previously
separated districts. See Figure 4.4.

Figure 4.4: In this figure, the purple and red districts from Figure 4.3 have
been merged into one yellow super-district (DeFord, 2019).

4.2.3 Stage 3: Spanning trees

The next stage of the ReCom algorithm is to draw a spanning tree of the
super-district.

In Stage 3 of the ReCom algorithm, we want to sample uniformly from all
potential spanning trees of the super-district (Deford et al., 2021). Wilson’s
algorithm is remarkable in that it allows for near-uniform sampling from
the set of all possible spanning trees for a graph in polynomial time, so we
implement it in Stage 3 of the ReCom algorithm (DeFord & Duchin, 2022;
Wilson, 1996).

Definition 27 (Uniform Spanning Tree). A uniform spanning tree (UST)
(see Figure 4.6) of a graph G is a spanning tree chosen uniformly at random
from the set of all possible spanning trees of G (Schweinsberg, 2008).

Specifically, ReCom implements the loop-erased random walk (LERW)
method of Wilson’s algorithm in order to generate uniform spanning trees.
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Definition 28 (Loop-erased random walk (LERW)). The loop-erased ran-
dom walk (LERW) method implements a simple random walk (see Defi-
nition 14) on a graph, removing loops as they appear.

In order to create a spanning tree of a graph, Wilson’s algorithm imple-
ments the LERW method to generate a uniform spanning tree through the
following steps (Schweinsberg, 2008):

1. Randomly select two vertices of the graph, x0 and x1. Run a LERW
from x0 to x1, creating the tree T1 (see Definition 11).

2. Once we have Tk, randomly select a vertex xk. Run a LERW from xk

to Tk, connecting xk to Tk and creating Tk+1

3. Repeat step 2 until all n vertices in the graph are connected in the tree
by n− 1 edges.

Figure 4.5: This Figure shows a simplified version of Wilson’s algorithm,
generating a spanning tree for nine vertices (Schweinsberg, 2008).

Wilson’s algorithm allows near-uniform sampling from all possible span-
ning trees of our super-district, and the LERW method ensures that we are
able to draw a spanning tree that includes all n vertices of our super-district,
connected by n− 1 edges, and containing no loops.

4.2.4 Stage 4: Edge deletion

The next stage is to remove an edge of the spanning tree, resulting in two
population-balanced districts. The meaning of “population-balanced” may
change depending on state preferences and the amount of population devia-
tion permitted by the established constraints.
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Figure 4.6: This Figure shows a possible spanning tree for the super-district
from Figure 4.4 (DeFord, 2019).

If it is not possible to remove an edge such that we end up with two
population-balanced districts, we must return to Stage 3 and draw a new
spanning tree. Although this situation does occur, Deford et al. (2021) note,
“in practice, the rejection rate is low enough that this chain runs efficiently.”
Thus, we must account for the possibility of there being no edge whose re-
moval will result in two population-balanced districts, but we assume that it
will not occur so frequently that it will disrupt ReCom’s operation.

It may also be the case that there exists a set of multiple possible edges
which we can select from, each of which, when deleted, generates two districts
which satisfy the established population balance constraint. In this case, we
sample uniformly from all removable edges.

Once we have removed an edge, we are left with two new population-
balanced districts, and hence a new plausible district map which gets added
to the ensemble (see Figure 4.7).

4.2.5 Stage 5: Repetition

Generally, full-scale redistricting problems require at least 10,000 steps of
the ReCom algorithm in order to generate a diverse ensemble which effectively
represents the set of plausible redistricting plans (Deford et al., 2021). As was
previously stated, although the steps of ReCom are somewhat computationally
complex, substantially fewer total steps are required for ReCom as compared
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(a) Edge deletion (b) Resulting new districts

Figure 4.7: We select the red edge to delete from the spanning tree, resulting
in two new population-balanced districts (DeFord, 2019).

to other ensemble-generation techniques in order to generate a representative
ensemble.

After each step of the ReCom algorithm generates a new proposed state
(i.e., a new districting plan), we must progress to Phase 4 of ensemble gener-
ation to ensure the proposed plan meets the constraints established in Phase
1 of ensemble generation. Next, we move to Phase 5 of ensemble genera-
tion, the Metropolis-Hastings algorithm, to determine whether to accept the
proposed districting plan into the ensemble (see Section 3.3.5). Recall that

the Metropolis-Hastings algorithm relies on the calculation of α = s(z)
s(y)

q(z|y)
q(y|z)

to determine whether to accept the proposed state z into the ensemble. We
calculate the transition probability q(y|z) by first generating the set of all
possible spanning trees of the super-district which could have been drawn
in Stage 3 of the ReCom algorithm, and all possible edges which could have
been cut in the spanning tree in Stage 4 of the ReCom algorithm to generate
two population-balanced districts. We then calculate the probability that we
would select the chosen spanning tree out of all possible spanning trees of
the super-district, as well as the probability that we would cut the chosen
cut edge out of all possible cut edges which would result in two population-
balanced districts. Together, these two probabilities compose q(y|z) (q(z|y)
is calculated similarly) (Autry et al., 2020). Once we have calculated q(y|z)
and q(z|y), we can easily determine the value of α, which defines the proba-
bility with which we will accept the proposed state z from the current state
y.
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4.3 ReCom for ensemble generation

We must run at least 10,000 steps of ReCom for multiple different initial plans
(as described in Section 3.3.2) (Deford et al., 2021). Deford et al. (2021)
have established that running at least 10,000 steps of ReCom ensures that the
ensembles are independent of their seed plans. In this way, we can create a
diverse ensemble which effectively represents the set of plausible redistricting
plans. We can then perform outlier analysis to determine whether a given
redistricting plan is an outlier in the context of our ensemble.

Thus, ReCom is a sophisticated algorithm which allows researchers to gen-
erate ensembles which are representative of the set of possible districting
plans. Compared to other techniques such as Flip and Mix, ReCom generates
ensembles which are, on average, substantially more compact, and we can
generate ensembles which are sufficiently representative and independent of
their seed plans in relatively few steps. These features make ReCom a powerful
tool in the field of redistricting analysis.
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Chapter 5

Conclusion

The preceding chapters detail the process of computational redistricting. By
building a dual graph of the geographical units of a state, we can establish
the process of redistricting as a graph partition problem. The goal of compu-
tational redistricting is to repeatedly mimic the process which legislators go
through when they draw a new districting plan, generating plausible district
plans until we have an ensemble that is representative of the sample space
of plausible district plans.

In order to define the sample space of plausible district plans, we imple-
ment constraints which replicate the limitations that legislators face in the
redistricting process. Some constraints, such as population balance, contigu-
ity, and neutrality, are easy to represent mathematically, while others, such
as compactness and Voting Rights Act compliance, are more difficult to im-
plement in an algorithm, largely due to the fact that legislators’ guidelines
for these constraints in practice are often unclear. However, in representing
these constraints mathematically, researchers in the field of computational re-
districting can limit ensemble generation to produce only maps in the sample
space of plausible district plans.

After establishing these constraints, researchers then generate an ensem-
ble by selecting a seed plan, proposing a modification on that seed plan,
ensuring the modification satisfies the established constraints, and imple-
menting the Metropolis-Hastings algorithm to preferentially accept plans
with higher compactness scores into the ensemble. The modification pro-
posal process (along with the steps to ensure the modification satisfies the
established constraints and the Metropolis-Hastings algorithm) is repeated
many times for each seed plan. Researchers emphasize the necessity of rely-
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ing on multiple seed plans in order to ensure that the resulting ensemble is
independent from its starting point and representative of the sample space
of plausible district maps.

Deford et al. (2021) describe both the Flip modification proposal algo-
rithm as well as the ReCom modification proposal algorithm. Although each
step of the Flip algorithm is much less computationally intensive than one
step of the ReCom algorithm, this advantage does not hold over time. The
Flip algorithm requires at least 1,000,000 steps in order to generate a repre-
sentative ensemble which is independent from starting point, while in some
cases only 10,000 ReCom steps are required for a representative ensemble.
The ReCom algorithm uses spanning trees to generate new plans through re-
combination, resulting in plans which are naturally compact and thus much
more likely to be selected by legislators. ReCom is a powerful tool in the
field of computational redistricting, as it allows researchers to generate en-
sembles which are representative of the universe of plausible district maps in
relatively few steps.

Once we have generated a representative ensemble of the sample space of
plausible district maps, we can perform outlier analysis to determine whether
the enacted district map may be a product of gerrymandering. We can per-
form this analysis by comparing the characteristics of the ensemble (i.e.,
compactness, partisan split, the distribution of minority voters, population
balance, etc.) to the characteristics of the enacted plan. If the enacted
plan appears to be an outlier with respect to any of the ensemble’s char-
acteristics, it may be a product of gerrymandering. Prior to the existence
of computational redistricting practices, it was difficult to prove that dis-
trict maps were instances of gerrymandering. Computational redistricting is
meaningful, in that it provides a method for analytically identifying outlier
plans compared to an ensemble of plausible district maps. Computational
redistricting presents a non-biased method for identifying potential instances
of gerrymandering– this ability can have substantial implications in the field
of politics.

For instance, in 2018 Governor Tom Wolf of Pennsylvania rejected a
Republican-drawn district map after enlisting Professor Moon Duchin of
Tufts University to analyze the fairness of the proposed plan. Using the tools
of computational redistricting, Duchin identified that the proposed map was
“an extreme outlier along partisan lines,” and that the map had “a decidedly
partisan skew that cannot be explained by Pennsylvania’s political geogra-
phy or the application of traditional districting principles” (Stern, 2018).
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Computational redistricting can therefore be a practical tool which informs
politicians of potential bias in proposed or enacted plans, providing a safe-
guard against gerrymandering.

5.1 Disclaimer

It is worth noting that although this thesis has investigated the potential
for computational redistricting to provide protection against potential in-
stances of gerrymandering, the same ensemble generation tools can be used
to generate plans which purposefully benefit certain political parties. In a
2004 Supreme Court ruling on standards for partisan gerrymandering, Jus-
tice Anthony Kennedy foreshadowed this dilemma by writing, “technology
is both a threat and a promise” (Suri & Saxe, 2019).

While ensemble generation can aid certain actors in identifying outlier
plans as potential instances of gerrymandering, ensemble generation can also
aid other actors in generating a wide array of plausible district maps, from
which those actors can choose the map which most benefits them. Ellenberg
(2017) writes, “Gerrymandering used to be an art, but advanced computation
has made it a science.” Ellenberg (2017) references the redistricting process
which took place in Wisconsin following the 2010 U.S. Census, in which Re-
publican legislators generated an ensemble of plausible district maps which
respected population balance and contiguity, and tested which map would
give Republican legislators the highest electoral advantage. Ellenberg (2017)
writes, “The map they adopted is precisely engineered to assure Republican
control in all but the most extreme circumstances.” Mathematicians identi-
fied that this plan was an outlier in terms of partisan bias and compactness,
but math also facilitated the creation of this sophisticated gerrymandered
map in the first place.

Judges are still skeptical of the use of outlier analysis to identify poten-
tial instances of gerrymandering, but computational redistricting is of key
importance now more than ever. As biased politicians develop more and
more sophisticated ways to draw gerrymandered maps, methods of outlier
analysis must also become more complex to counter this effort at gerryman-
dering.
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5.2 Tennessee

On the morning of Monday, March 27, 2023, a shooter killed six people
(including three children) at the Covenant School in Nashville, Tennessee.
This mass shooting galvanized advocates for gun control in Tennessee, and
protests took place across the state.

Three Democratic members of the Tennessee House of Representatives,
Justin Jones, Justin Pearson, and Gloria Johnson, participated in a protest
at the Tennessee State Capitol on March 30, 2023. These three lawmakers,
also known as the “Tennessee Three,” were accused of “disorderly behavior”
by the Republican-led State House of Representatives after they “approached
the podium between bills without being recognized to speak” (Jones, Burgess,
& Gibson, 2023). The State House sought to expel the “Tennessee three,”
voting to oust Jones and Pearson, while failing to expel Johnson. Both Jones
and Pearson have since been reinstated to the Tennessee House by officials
in Nashville and Memphis, respectively.

It is clear that the state of Tennessee is in political crisis. Republican law-
makers are ignoring the wishes of thousands of constituents by silencing their
elected lawmakers. Edelman (2023) writes that “redistricting brought Ten-
nessee to this moment.” Former Attorney General Eric Holder noted that
the efforts of Republican lawmakers to expel the Tennessee Three “would
not be possible without first rigging the electoral maps to prevent free and
fair elections where the will of the people might be fully expressed” (Edel-
man, 2023). Many other experts claim that the current political climate
in Tennessee is direct result of gerrymandering, particularly following the
implementation of new district maps following the 2020 U.S. Census (see
Figure 1.1). Wines (2023) notes that Tennessee is not alone in the experi-
ence of extreme polarization intensified by biased redistricting practices; he
cites similar political climates in North Carolina, Wisconsin, Missouri, Ohio,
Arkansas, and Florida, each of which is experiencing the political ripple effect
of gerrymandering.

Tennessee’s redistricting practices motivated this thesis at the start of
writing, and they continue to motivate this thesis as writing concludes. Fu-
ture research would entail conducting outlier analysis on Tennessee’s newly
enacted congressional district map which was created following the 2020 U.S.
Census in order to provide analytical evidence for the many existing claims
that the enacted map is a product of partisan gerrymandering. Gerryman-
dering can be a powerful political tool, but computational redistricting tech-
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niques can help counteract the efforts of certain legislators to create district
plans with partisan bias.
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